Dynamic analysis of multi-link spatial flexible manipulator arms with dynamic stiffening effects

نویسندگان

  • Sijia Chen
  • Dingguo Zhang
  • Jun Liu
چکیده

Abstract The dynamics for multi-link spatial flexible manipulator arms is investigated. The system considered here is an N-flexible-link manipulator driven by N DC-motors through N revolute flexiblejoints. The flexibility of each flexible joint is modeled as a linearly elastic torsional spring, and the mass of the joint is also considered. For the flexibility of the link, all of the stretching deformation, bending deformation and the torsional deformation are included. The complete governing equations of motion of the system are derived via the Lagrange equations. The nonlinear description of the deformation field of the flexible link is adopted in the dynamic modeling, and thus the dynamic stiffening effects are captured. Based on this model, a general-purpose software package for dynamic simulation of multi-link spatial flexible manipulator arms is developed. Several illustrative examples are given to validate the algorithm presented in this paper and to indicate that not only dynamic stiffening effects but also the flexibility of the structure has significant influence on the dynamic performance of the manipulator. c © 2012 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1206303]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Flexible Manipulators

This paper presents an application of Continuum (i.e. Lagrangian) and Finite Element Techniques to flexible manipulator arms for derivation of the corresponding Dynamic Equations of Motion. Specifically a one-link flexible arm is considered for detailed analysis, and the results are extended for the case of a two - link flexible manipulator. Numerical examples are given for the case of both one...

متن کامل

Maximum Allowable Dynamic Load of Flexible 2-Link Mobile Manipulators Using Finite Element Approach

In this paper a general formulation for finding the maximum allowable dynamic load (MADL) of flexible link mobile manipulators is presented. The main constraints used for the algorithm presented are the actuator torque capacity and the limited error bound for the end-effector during motion on the given trajectory. The precision constraint is taken into account with two boundary lines in plane w...

متن کامل

Dynamic Load Carrying Capacity of Mobile-Base Flexible-Link Manipulators: Feedback Linearization Control Approach

This paper focuses on the effects of closed- control on the calculation of the dynamic load carrying capacity (DLCC) for mobile-base flexible-link manipulators. In previously proposed methods in the literature of DLCC calculation in flexible robots, an open-loop control scheme is assumed, whereas in reality, robot control is achieved via closed loop approaches which could render the calculated ...

متن کامل

Modeling Flexibility Effects in Robotic Arms Via the Modified 4x4 D-H Homogeneous Transformation

This paper presents a method for the kinematical modeling of robot manipulator arms with flexible members. Development of such techniques are important for the improvement of robotic arms precision performance and their mechanical design. The approach employs the (4X4) Denavit-Hartenberg homogeneous transformations to describe the kinematics of light weight flexible manipulator arms. The method...

متن کامل

Dynamic Load Carrying Capacity of Flexible Manipulators Using Finite Element Method and Pontryagin’s Minimum Principle

In this paper, finding Dynamic Load Carrying Capacity (DLCC) of flexible link manipulators in point to-point motion was formulated as an optimal control problem. The finite element method was employed for modelling and deriving the dynamic equations of the system. The study employed indirect solution of optimal control for system motion planning. Due to offline nature of the method, many diffic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015